Eddy Current Losses in Active Clamp Forward Converter

To check the Eddy Current Losses influence on the Active Clamp Forward Converter efficiency the two transformer on the same breadboard were replaced. One transformer had the secondary winding made by some thin wires to get eddy current losses as minimum. The secondary winding of the second transformer was made by one wire with the same DC resistance as the first one. The same core and coil former with both primary and bias windings was used, the secondary winding was replaced only.

Converter Parameters:

Vin = 299VDCVout = 5VDCIout = 15A $F_{SW} = 119kHz$ D = 0.37 $\Delta I_{SEC} = 4.5A_{P-P}$

Transformer specification:

Core: ETD-29 Ferrite: N87 by Epcos Air gap: appr. 0.2mm to meet the primary inductance 3.2mH Primary: 86T Ø0.19mm Bias: 2T Ø0.1mm

Secondary – Var. 1: 4T 16 stranded wires \emptyset 0.41mm $R_{DC} = 1.82 \text{ m}\Omega$ $R_{AC}/R_{DC} = 1.3$ for one layer $R_{AC} = 2.37 \text{ m}\Omega$

 $\begin{array}{l} Secondary-Var. \ 2:\\ 4T \quad \ 01.7 \ mm.\\ R_{DC}=1.83 \ m\Omega\\ R_{AC}/R_{DC}=4.5 \ for \ one \ layer\\ R_{AC}=8.24 \ m\Omega \end{array}$

RMS of secondary current is the same for both variants:

 $I_{DC} = I_{OUT} * D = 16A * 0.37 = 5.92A$

$$I_{AC} = I_{OUT} * \sqrt{(D * (1 - D))} = 16A * \sqrt{0.37 * (1 - 0.37)} = 7.72A$$

So we must get the secondary winding losses:

Var. 1:

$$P_{\Sigma I} = R_{DC} * I_{DC}^2 + R_{AC} * I_{AC}^2 = 1.82 \text{m}\Omega * 5.92 \text{A}^2 + 2.37 \text{m}\Omega * 7.72 \text{A}^2 = 205 \text{mW}$$

Var. 2:

$$P_{\Sigma 2} = R_{DC} * I_{DC}^2 + R_{AC} * I_{AC}^2 = 1.83m\Omega * 5.92A^2 + 8.24m\Omega * 7.72A^2 = 555mW$$

This difference $P_{\Sigma 1}$ - $P_{\Sigma 2}$ = 350mW should be see in the input current as:

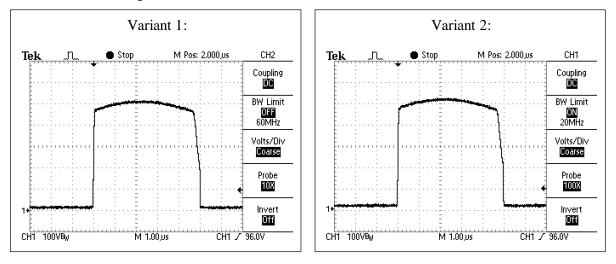
$$\Delta I_{IN} = \frac{P_{\Sigma 1} - P_{\Sigma 2}}{V_{IN}} = \frac{350 \text{mW}}{299 \text{V}} = 1.17 \text{mA}$$

Test set-up and conditions:

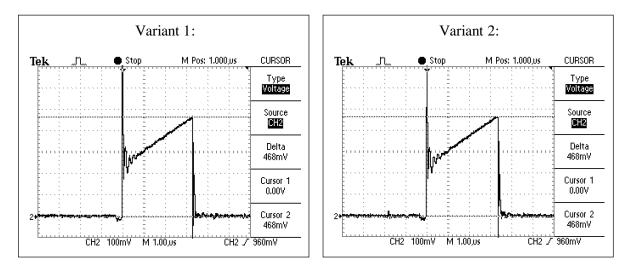
Input voltage, Input Current, Output Voltage and Output Current were measured by ESCORT model 95T Multimeters.

The input voltage was provided by B5-50 299VDC, 299mA power supply.

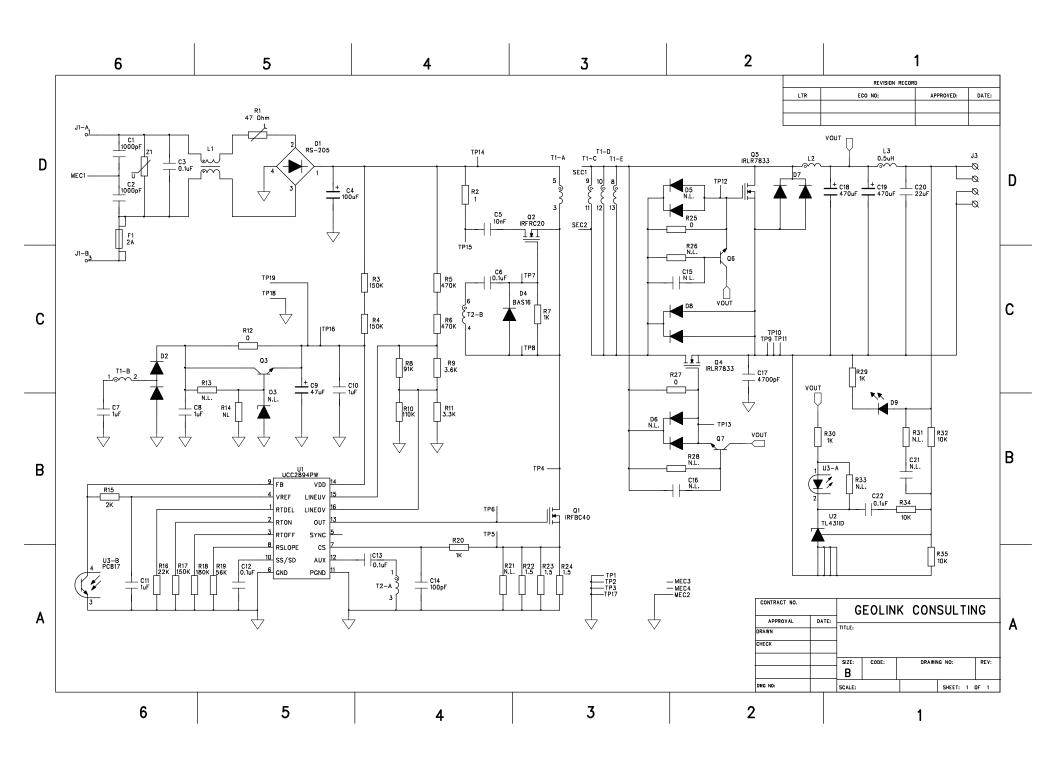
The output was loaded by KIKUSUI model PLZ303W electronic load.


Primary current and drain voltage were monitored by Tektronix model TDS210 oscilloscope.

The full load (15A) was applied for appr. 20min to get stabile temperature on all components. Test was performed at 25°C with no airflow.


Test results:

Variant 1:	Variant 2:
$V_{IN} = 299.37V$	$V_{IN} = 299.51 V$
$I_{IN} = 280.50 \text{mA}$	$I_{IN} = 280.37 \text{mA}$
$V_{OUT} = 5.023 V$	$V_{OUT} = 5.023 V$
$I_{OUT} = 15.005A$	$I_{OUT} = 15.005 A$
Eff. = 89.75%	Eff. = 89.75%


The drain voltage waveforms:

The Primary Current waveforms:

The Schematic diagram and Bill of Materials are shown below:

Qty	Ref. Des.	Part Number	Manufacturer	Description
2	C1, C2	B81122-C1102	Epcos	EMI Supression Capacitor, Y2
1	C14	GRM2165C2A101JA01D	Murata	100pF, 100V, NP0, 0603 Ceramic
3	C15, C16, C21	No Load		
1	C17	DE1B3KX472M	Murata	Class Y1 Cap., 4700pF
2	C18, 19	EXR471M25B	Hitano	470uF, 25V, Low ESR, 10*16 Al. Cap.
1	C20	ECJ-4YB0J226M	Panasonic-ECG	22uF, 6V, X5R, 1210 Ceramic
1	C3	B81131-D1104	Epcos	X2 MKT Cap. 0.1uF
1	C4	KMH401E101MP30S	Nippon Chemi-Con	100uF, 400V, 25*25 Al. Cap.
1	C5	ECJ-1VB1H103K	Panasonic-ECG	0.01uF, 500V, X7R, 1206 Ceramic
4	C6, C12, C13, C22	ECJ-1VB1E104K	Panasonic-ECG	0.1uF, 25V, X7R, 0603 Ceramic
4	C7, C8, C10, C11	ECJ-1VB1C105K	Panasonic-ECG	1uF, 16V, X5R, 0603 Ceramic
1	C9	EHR470M50B	Hitano	47uF, 50V, 6.3x11, -40+105°C Al.
	D1	RS-205	DC components	2A, 600V SIP Bridge Rectifier
1	D2	BAV99	Philips	Series, General Purpose
5	D3, D5, D6 - D8	No Load		
	D4	BAS16	Philips	General, 75V, 200mA, SOT-23
	D9	FYL-30004ET	Foryard	LED Red 3mm through-hole
	F1	FH-101		5*20 TroughHole Fuse Holder
	J1	DG305-02V2	Degson	10mm Terminal Block, 2 term.
	J3	DG25C-04	Degson	300mil Terminal Block, 4 term.
	L1			AC Common mode choke
	66			8.7uH, Core T90-26 Ring, 11T 7*0.8 Inductor
1	L3	SC5020-R50M	EMC	0.5", 24A SMT Power Inductor
1	Q1	IRFBC40	IR	600V, 1.2 Ohm, N-Channel MOSFET, TO-220
1	Q2	IRFRC20	IR	N-ch MOSFET, 600V ,2A, 4.4Ohm, DPAK
	Q3, Q6, Q7	No Load		
	Q4, Q5	IRLR7833	IR	N-ch MOSFET, 600V ,2A, 4.40hm, DPAK
	R1	SCK-472	Voltts	NTC termistor 470hm 2A
	R10	CR0603JW114	Bourns	110kOhm, 0603, 5% resistor
_	R11	CR0603FW3301	Bourns	3.3kOhm, 0603, 1% resistor
3	R12, R25, R27	CR0603000	Bourns	0 Ohm, 0603 resistor
	R21, R26, R28	No Load		1 KOhm, 0603, 5% resistor
	R15	CR0603FW2001	Bourns	2kOhm, 0603, 1% resistor
	R16	CR0603FW2202	Bourns	22kOhm, 0603, 1% resistor
	R17	CR0603FW1503	Bourns	150kOhm, 0603, 1% resistor
	R18	CR0603FW1803	Bourns	180kOhm, 0603, 1% resistor
	R19	CR0603FW5602	Bourns	56kOhm, 0603, 1% resistor
	R2	CR1206JW1R0	Bourns	1 Ohm, 1206, 5% resistor
3	R22 - R24	CR1206JW1R5	Bourns	1.5 Ohm, 1206, 5% resistor
4	R7, R20, R29, R30	CR0603JW102	Bourns	1K, 0603, 5% resistor
		CR0603FW1002	Bourns	10K, 0603, 1% resistor
	R3, R4	CR1206JW153	Bourns	150kOhm, 1206, 5% resistor
	R5, R6	CR1206FW4702	Bourns	Resistor 5% Any Value 1206
	R8	CR0603JW913	Bourns	91K, 0603, 5% resistor
	R9	CR0603FW3601	Bourns	3.6K, 0603, 1% resistor
	T1			75W, 5VOUT Off-Line Power Transformer, ETD-29
	T2	PE-68386	Pulse Ing.	1:1 Gate Drive Transformer
	U1	UCC2894PW		Active Clamp, Current Mode PWM Controller
	U2	TL431ID	TI	Progr. Reference 2.5V,SO-8, Ind.
	U3	PC817	Sharp	5,3 kV Through Hole Optocoupler
1	Z1	FNR-10K471		Varistor 470V, 45J